3.159 \(\int \frac{(a+a \cos (c+d x))^2}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=121 \[ \frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{16 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{16 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}} \]

[Out]

(-16*a^2*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c + d*x])/(5*
d*Cos[c + d*x]^(5/2)) + (4*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (16*a^2*Sin[c + d*x])/(5*d*Sqrt[Cos[c
+ d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.118515, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2757, 2636, 2639, 2641} \[ \frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{16 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{16 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]

[Out]

(-16*a^2*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c + d*x])/(5*
d*Cos[c + d*x]^(5/2)) + (4*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (16*a^2*Sin[c + d*x])/(5*d*Sqrt[Cos[c
+ d*x]])

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^2}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=\int \left (\frac{a^2}{\cos ^{\frac{7}{2}}(c+d x)}+\frac{2 a^2}{\cos ^{\frac{5}{2}}(c+d x)}+\frac{a^2}{\cos ^{\frac{3}{2}}(c+d x)}\right ) \, dx\\ &=a^2 \int \frac{1}{\cos ^{\frac{7}{2}}(c+d x)} \, dx+a^2 \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx+\left (2 a^2\right ) \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{1}{5} \left (3 a^2\right ) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx+\frac{1}{3} \left (2 a^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-a^2 \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{16 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}-\frac{1}{5} \left (3 a^2\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{16 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{16 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.19474, size = 487, normalized size = 4.02 \[ \frac{2 \csc (c) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \left (\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\tan ^2(c)+1} \sqrt{1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt{\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac{\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt{\tan ^2(c)+1}}+\frac{2 \cos ^2(c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{5 d}-\frac{\csc (c) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt{\cot ^2(c)+1}}+\sqrt{\cos (c+d x)} \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \left (\frac{\sec (c) \sin (d x) \sec ^3(c+d x)}{10 d}+\frac{\sec (c) (3 \sin (c)+10 \sin (d x)) \sec ^2(c+d x)}{30 d}+\frac{\sec (c) (5 \sin (c)+12 \sin (d x)) \sec (c+d x)}{15 d}+\frac{4 \csc (c) \sec (c)}{5 d}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*((4*Csc[c]*Sec[c])/(5*d) + (Sec[c]*Sec[c + d*x]
^3*Sin[d*x])/(10*d) + (Sec[c]*Sec[c + d*x]^2*(3*Sin[c] + 10*Sin[d*x]))/(30*d) + (Sec[c]*Sec[c + d*x]*(5*Sin[c]
 + 12*Sin[d*x]))/(15*d)) - ((a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTa
n[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1
 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2])
+ (2*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + Arc
Tan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcT
an[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTa
n[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 +
Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d)

________________________________________________________________________________________

Maple [B]  time = 3.846, size = 386, normalized size = 3.2 \begin{align*} -8\,{\frac{\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{a}^{2}}{\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( -1/12\,{\frac{\cos \left ( 1/2\,dx+c/2 \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{ \left ( \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1/2 \right ) ^{2}}}+{\frac{17\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) }{30\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}}-4/5\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) }{\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}}-2/5\,{\frac{\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1} \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) }{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}}-{\frac{\cos \left ( 1/2\,dx+c/2 \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{80\, \left ( \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1/2 \right ) ^{3}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^2/cos(d*x+c)^(7/2),x)

[Out]

-8*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-1/12*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+17/30*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))-4/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-2/5*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/80*cos(1/2*d*x+1/2*c)*(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*
d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)